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Section One: Calculator-free  35% (52 Marks) 

This section has seven (7) questions. Answer all questions. Write your answers in the spaces provided. 
 
Working time for this section is 50 minutes. 
 
 
Question 1 (7 marks) 

Two vectors are given by 9 4 a i j  and 3 4 b i j . Determine 
 
(a) a vector parallel to 𝐚 − 𝐛 of magnitude 25. (3 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) a in terms of d and e, where 3 5 d i j  and 5 2 e i j . (4 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Question 2 (7 marks) 

Three vectors are given by 𝐚 = 2𝐢 − 2𝐣, 𝐛 = 𝐢 − 3𝐣 and 𝐜 = 3𝐢 + 𝐣. 
 
Determine 
 
(a) a unit vector d, parallel to 𝐚 + 2𝐛. (3 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) the value(s) of k so that the magnitude of the vector 𝐚 + 𝑘𝐛 is 4. (4 marks) 
 
 
 
  



Question 3 (9 marks) 

Consider the matrices 𝐴 = ቂ
2 −3

−2 4
ቃ, 𝐵 = ቂ

−3
2

ቃ, 𝐶 = ቂ
1 0 −1
0 2 −2

ቃ and 𝐷 = [4 −5]. 

 
(a) It is possible to form the product of all four matrices. State the dimensions of the resulting product.

 (2 marks) 
 
 
 
 
 
 
 
 
(b) Determine the matrix 

ଵ

ଶ
𝐷𝐶. (2 marks) 

 
 
 
 
 
 
 
 
 
 
(c) Determine the inverse of matrix A. (2 marks) 
 
 
 
 
 
 
 
 
 
 
 
(d) Clearly show use of matrix algebra to solve the system of equations 2𝑥 − 3𝑦 + 3 = 0 and  

4𝑦 = 2𝑥 + 2. (3 marks) 
 
 
 
 
  



Question 4 (7 marks) 

(a) Matrix A represents a rotation of 180º about the origin. Determine 
 

(i) matrix A. (1 mark) 
 
 
 
 
 
 
 
(ii) the exact coordinates of the point (-2, 3) after transformation by matrix A. (1 mark) 
 
 
 
 
 
 
 
(iii) the determinant of matrix A. (1 mark) 
 
 
 
 
 

 
 

(b) Matrix 
1 0

0 1
B

 
  
 

. Describe the transformation represented by B and calculate its determinant. (2 

marks) 
 
 
 
 
 
 
 
 
 
(c) Use an example to show that two non-singular square matrices 𝐶 and 𝐷 exist such that the 

determinant of their sum is equal to the sum of their determinants. (2 marks) 
 
 
 
 
 
 
  



Question 5 (7 marks) 

(a) Solve the equation tan ቀ
௫ାଶହ°

ଶ
ቁ = √3 for 0° ≤ 𝑥 ≤ 540°. (3 marks) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Prove that (1 − cos 𝑥)(1 + sec 𝑥) = sin 𝑥 tan 𝑥. (4 marks) 
 
 
 
 
 
 
  



Question 6 (7 marks) 

(a) Sketch the graph of 𝑦 = 2 cosec(𝑥 + 90) for 0 180x    . (3 marks) 
 
 

 
 
 
 
 
(b) Prove the identity cot 𝐴 + tan 𝐴 = sec 𝐴 cosec 𝐴. (4 marks) 
 
 
 
 
 
 
 
 
  



Question 7 (8 marks) 

(a) Prove that the sum of any three consecutive terms of an arithmetic sequence with first term a and 
common difference d is always a multiple of three, for 𝑎, 𝑑 ∈ ℕ. (3 marks) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Use mathematical induction to prove that 7ଶ௡ିଵ + 5 is always divisible by 12, for 𝑛 ∈ ℕ. 
  (5 marks) 
 
 
 
 
 
 


