Revision 1

Year 11 Examination

Question/Answer Booklet

MATHEMATICS SPECIALIST UNITS 1 AND 2 Section One: Calculator-free					
Student Number:	In figures				
	In words Teacher name	 	 	 	

Time allowed for this section

Reading time before commencing work: five minutes Working time for this section: fifty minutes

Materials required/recommended for this section

To be provided by the supervisor This Question/Answer Booklet Formula Sheet

To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters

Special items: nil

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Section One: Calculator-free

35% (52 Marks)

This section has seven (7) questions. Answer all questions. Write your answers in the spaces provided.

Working time for this section is 50 minutes.

Quest	(7 marks)				
Two vectors are given by $\mathbf{a} = 9\mathbf{i} + 4\mathbf{j}$ and $\mathbf{b} = 3\mathbf{i} - 4\mathbf{j}$. Determine					
(a)	a vector parallel to $\mathbf{a} - \mathbf{b}$ of magnitude 25.	(3 marks)			

(b) **a** in terms of **d** and **e**, where $\mathbf{d} = 3\mathbf{i} - 5\mathbf{j}$ and $\mathbf{e} = 5\mathbf{i} - 2\mathbf{j}$.

(4 marks)

(7 marks)

Three vectors are given by $\mathbf{a} = 2\mathbf{i} - 2\mathbf{j}$, $\mathbf{b} = \mathbf{i} - 3\mathbf{j}$ and $\mathbf{c} = 3\mathbf{i} + \mathbf{j}$.

Determine

(a) a unit vector **d**, parallel to $\mathbf{a} + 2\mathbf{b}$.

(3 marks)

(b) the value(s) of k so that the magnitude of the vector $\mathbf{a} + k\mathbf{b}$ is 4. (4 marks)

(9 marks)

Consider the matrices $A = \begin{bmatrix} 2 & -3 \\ -2 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & -2 \end{bmatrix}$ and $D = \begin{bmatrix} 4 & -5 \end{bmatrix}$.

(a) It is possible to form the product of all four matrices. State the dimensions of the resulting product. (2 marks)

(b) Determine the matrix
$$\frac{1}{2}DC$$
.

(c) Determine the inverse of matrix *A*.

(2 marks)

(2 marks)

(d) Clearly show use of matrix algebra to solve the system of equations 2x - 3y + 3 = 0 and 4y = 2x + 2. (3 marks)

Question 4 (
(a)	Matrix A represents a rotation of 180° about the origin. Determine							
	(i)	matrix A.	(1 mark)					
	(ii)	the exact coordinates of the point $(-2, 3)$ after transformation by matrix A.	(1 mark)					
	(ii)	the exact coordinates of the point (-2, 3) after transformation by matrix A .	(1 mark)					

(iii) the determinant of matrix A.

(b) Matrix $B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$. Describe the transformation represented by *B* and calculate its determinant. (2 marks)

(1 mark)

(c) Use an example to show that two non-singular square matrices *C* and *D* exist such that the determinant of their sum is equal to the sum of their determinants. (2 marks)

(a) Solve the equation $\tan\left(\frac{x+25^\circ}{2}\right) = \sqrt{3}$ for $0^\circ \le x \le 540^\circ$.

(7 marks)

(3 marks)

(b) Prove that $(1 - \cos x)(1 + \sec x) = \sin x \tan x$.

(4 marks)

(a) Sketch the graph of $y = 2 \operatorname{cosec}(x + 90)$ for $0^\circ \le x \le 180^\circ$.

(7 marks) (3 marks)

(b) Prove the identity $\cot A + \tan A = \sec A \csc A$.

(4 marks)

(8 marks)

(a) Prove that the sum of any three consecutive terms of an arithmetic sequence with first term *a* and common difference *d* is always a multiple of three, for $a, d \in \mathbb{N}$. (3 marks)

(b) Use mathematical induction to prove that $7^{2n-1} + 5$ is always divisible by 12, for $n \in \mathbb{N}$. (5 marks)